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ABSTRACT
 In this paper,  we determine the spectrum of the Norlund Q operator on . In which 
case we show that the spectrum comprises of  all complex number , such that 

. We achieve this by solving the system for x in terms of  

y to obtain the matrix of  We then subject the matrix to analysis using 

summability methods to determine the conditions for 

Key words:  Boundedness, operator,  spectrum,  norm,  convergence,  
sequences,  		          matrix

Notations: , , will denote respectively, the set of 
	     complex numbers, the spectrum of T, the set of real numbers, the set        	
                   of sequences converging to zero, the norm of an operator T, the Cesaro 
	     matrix of order 1.
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1.0 	 INTRODUCTION
Given a regular matrix A, Mercerian theorems are concerned with determining the real 

or complex values for which That is , 
implies that lim x =t. For (Wenger,1975). The problem is equivalent to determining 

the resolvent set for A, or, determining the spectrum of A. Therefore a study of 
spectra of operators may lead to the development of their mercerian theorems.
	 A study of the structure of Norlund means shows that they are a generalisation 
of weighted means and Holder means which comprises of Cesaro means. Therefore 
a study of the spectra of Norlund operators may be regarded as a generalization of 
similar results obtained for weighted means as well as Holder means.
	 Quite a lot has been done on the analysis of Norlund means. In 1956, Alexander 
Peyerimhoff wrote on the convergence fields of Norlund means,(Peyerimhoff,1956). 
T. Patt(1959) wrote on the absolute summability of Norlund means of a Fourier series. 
David Borwein and F.P.Cass(1968) wrote on strong Norlund summability. B.Kuttner 
and B.Thorpe(1969) obtained some results on strong Norlund summability of a Cauchy 
product series. In 1984, David Borwein and F.Peter Cass obtained some results on 

Norlund matrices as bounded operators on p ,(Borwein and Cass,1984). D.Borwein 
and B.Thorpe(1985),determined conditions for inclusion between Norlund summability 
methods.
	 We now state some of the results achieved concerning the spectra of certain 
matrix operators on some sequence spaces. From this we see that very little has been 
done concerning the spectra of Norlund means or matrices. Hence there is a need to 
shift our interest to this particular class of infinite matrices. We also summarise some 
key results from functional analysis and summability theory, especially those that are 
crucial to our study.
	 In 1960, E. K.Dorff and A.Wilansky showed that the spectrum of a cer-

tain mercerian Norlund matrix with 1nna = , contains negative numbers(Dorff and 
Wilansky,1960). C. Coskun(2003), determined the set of eigenvalues of a certain 
Norlund matrix as a bounded operator over some sequence spaces. In 1965, A. Brown, 
P. R. Halmos, A. L. Shields, determined the spectrum of the Cesaro operator on 2  
of square summable sequences(Brown et al,1965). They showed that the spectrum 
is all ∈⊄l , such that, 1 1.l − ≤ They used the fact that the key to determining the 
spectrum ( )1Cs of 1C is the identity ( )( )*

1 1 ,I C I C I D− − = −
where D is diagonal. 

In 1968, D. W. Boyd extended the work by determining the spectrum of the same 
operator on ( )pL R+

, for 2p ≠ - the space of p- Lebesgue integrable functions on
+ℜ  (Boyd,1968).  He in particular showed that the spectrum is the set 
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,which for 1,p > is a circle with center 

( )12
p

p
−

and 
the same radius. And for p=1, is the imaginary axis. The method of proof involved 
exhibiting integral operators which are proved to be the resolvents of Cesaro opera-

tor for 

1 1Re ,p
pl
−  < 

  and 

1 1Re p
pl
−  > 

  respectively. In 1972, N. K. Sharma 
determined the spectra of conservative matrices and in particular showed that the 
spectrum of any Hausdorff method is either uncountable or finite. In the latter case 
it is shown that the spectrum consists of either one point or two points. They also 
obtain the sharpest possible Mercerian theorem for Euler methods. In their proof the 

used the properties of an analytic function in D = 

1 1:
2 2

z z 
∈ − < 

 
�

 and which 
commutes with the Cesaro operator of order 1(Sharma,1972). In 1975, Robert B. 
Wenger computed the fine spectra of Holder summability operators on c-the space 
of convergence sequences (Wenger, 1975). He use the state diagram in his proof.  

In 1978, James A. Deddens computed the spectra of all Hausdorff operators on
2
+ - 

the space of square summable sequences (Deddens, 1978). They were able to show 

that ( ) { }: 1 1H z za
as = − ≤

and 2 .H a
a = The technique of his proof involved 

standard operator theory and the use of analytic functions. In 1983, B. E. Rhoades 
extended Wenger’s results by determining the fine spectra of weighted mean opera-
tors on c (Rhoades, 1983). In 1985, J. B. Reade determined the spectrum of the 

Cesaro operator on 0c - the space of null sequences (Reade, 1985). He showed that 

the spectrum consists of all complex numbers l , such  that 

1 1 .
2 2

l − ≤
The proof 

used standard operator theory. In 1985, Manuel Gonzalez computed the fine spectrum 

of the 1C  operator on p ( )1 p< < ∞ (Gonzalez, 1985). In 1989, J. Okutoyi and 
B. Thorpe computed the spectrum of the  operator on  () – the space of double null 
sequences (Okutoyi and Thorpe, 1989). They identified the spectrum as the set,  In 
1990, J. Okutoyi determined the spectrum of the  operator on (Okutoyi, 1990). He 
showed that the spectrum consists of all complex numbers such that He obtained 
the results by finding the eigenvalues of the adjoint operator on (the dual space of ). 
And then showing that the operator lies in Bfor all outside the closure of this set of 
eigenvalues. In 2005,  Okutoyi and Akanga computed the spectrum of the  operator 
on (Okutoyi and Akanga, 2005). They used methods similar to those of the preceding 
case and were able to show that the spectrum is the same.
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1.1	 Definition: Norm of an Operator
Let X  be a Banach space. B(X,X)=B(X)-the linear space of all bounded linear 
operators T on X into itself, is a Banach space with the norm 

                   ,
[see Dunford and Schwartz, 1967, page 475].       

1.2	 	 Definition: (Adjoint Operator T*)          
The adjoint T* of a linear operator T  B(X,Y) is the mapping from Y* the dual 
space of  Y to X* the dual space of X, defined by  T* o f = f o T, fY*.                    

1.3	 Definition: (Resolvent operator, = )            
Let X be a non empty Banach space and suppose that  With T we 

associate the operator , I the identity operator on X. If   
has an inverse, we denote it by  and call it the resolvent operator of T.    

1.4	 Definition: (Resolvent set  the spectrum ,   of T)        
Let X be a non empty Banach space and suppose that The resolvent 

set of T is the set of all complex numbers  for which  exists as a bounded 

operator with domain X. The spectrum of T is the complement of   in .

1.5	 Definition: ( 1C matrix)

The 1C matrix of order 1 is defined as 
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  1.6	 Definition: ( p Space)

This is the space of sequences, ( )kx ,such that, 0

p
k

k
x

∞

=

< ∞∑
.

1.7	 Definition: (Space 0bv )
This is the space of sequences of bounded variation, i.e., sequences x, such that,

                                          
1

0
,k k

k
x x

∞

+
=

− < ∞∑
with 0kx → as .k →∞

1.8	 Definition: (Space pw ( )1 p≤ < ∞ ) 
This is the space of strongly Cesaro summable complex sequences of order 1 

index p, i.e, the set of all sequences ( ) 1
,k k

x x ∞

=
= such that there exists a number 

depending on x for which 0
.

p

k
k

x
∞

=

− < ∞∑ 

Theorem 1.1 (Wilansky, 1984): Let T∈B(X), where X is any Banach space. Then the 

spectrum of T* is  identical with the spectrum of T. Furthermore ( ) ( )( )**R T R Tl l=
 

for ( ) ( )* .T Tl r r∈ =

Theorem 1.2 (Stieglitz and Tietz, 1977): A matrix ( ) ( )0 0,nkA a c c= ∈  iff

(i) 
lim 0nk

n
a =

 for  each 0k ≥

(ii) 0
supn nk

k
a

∞

=

< ∞∑
, moreover 0

supn nk
k

A a
∞

=

= ∑
.           

Lemma 1.1 (Taylor and Lay, 1980): Each bounded linear operator T : X→  Y, where 

X = 0 1, ,c c  and Y = ( )0 , 1 , ,pc p c ∞≤ < ∞   determines and is determined by 
an infinite matrix of complex numbers.          

Lemma 1.2 (Wilansky, 1984): Let 0 0:T c c→  be a linear map and define 
*

1 1:T →   by         

      
* *

0 1,T og goT g c= ∈ =  . Then T must be given by a matrix by lemma (1.1) and 

moreover 
*

1 1:T →   is the transposed matrix of T.               
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* *

0 1,T og goT g c= ∈ =  . Then T must be given by a matrix by lemma (1.1) and 

moreover 
*

1 1:T →   is the transposed matrix of T.

2.0	 THE SPECTRUM OF Q MATRIX AS AN OPERATOR ON c0 
2.1	 Definition: (Norlund means (N,p))               
The transformation given by                    

                   0

1 , 0,1, 2,...
n

n n k k
kn

y p x n
P −

=

= =∑
                                                               

(2.1)      

                       where 0 1 2 ... 0n nP p p p p= + + + + ≠  , is a complex series ; is 
called a Norlund means and is denoted by (N,p). The corresponding matrix is 
given by  

             

See Wilansky,1984, pages 24-33. 

If 1, 0,1np n= =  and 0, 2np n= ≥ , then the matrix ( )nkA a=  in (2.2) 
becomes matrix Q given by the formula, 

                                             

( )

1, 0
1 , 1
2
0,

nk

n k

Q q n k n

otherwise

= =
= = − ≤ ≤

                 (2.3)                          

So that 
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This is the matrix of our interest in this paper.
2.1 Remark: The Q matrix is not a Hausdorff matrix. This is so since Q does 

not commute with the Cesaro matrix of order 1, 1C  matrix (Wilansky, 1984) 

page 24.  Corollary 2.1: ( )0Q B c∈ , moreover 0
1

c
Q =

.

Proof: It is clear from theorem (1.2) and matrix (2.3) since 
lim 0nkn

q =
 for 

each 0.k ≥  Moreover 

                                         
( )

0
0

sup sup 1,1,1,... 1n nkc
k

Q q
∞

=

= = =∑
.�

Corollary 2.2: Let 0 0:Q c c→ , then ( )*
1Q B∈   and in addition

                                (2.4)
 

Proof: It is clear from lemma (1.2).�

Theorem 2.1: ( )0Q B c∈  has no eigenvalues.

Proof: Suppose ,Qx x xl q= ≠  such that 0x c∈  and ∈⊄l . Then solving the 

system of equations involved, we have that if 0x  is the first non-zero entry 
of vector x, then 1l = . But  implies that  So that  does not tend to zero as 
. Hence  is not an eigenvalue of . If  is the first non-zero entry of x, then .  
Solving the system with  results in  which is a contradiction. Hence   cannot 
be an eigen-value of . Hence, the result.

2.1  	 Main Results
  

Theorem 2.2: The eigenvalues of ( )*
1Q B∈   forms the set           
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Proof: Let 
* ,Q x x xl q= ≠  and ∈⊄l  .Then 

                                                      

Solving system (2.5) for x in terms of x 0 , gives                

                 
( )

1

0
1 12 1 1 , 1

2

n
n

nx x nl
l l

−
   = − − ≥   
             

Now,           

            

( )

( )

1

1
1

1 12 1 1
12lim lim 2 1

21 12 1 1
2

n
n

n
nx x

nn

x
m

x

l
l l l

l
l

l l

+

+
−→∞ →∞

   − −        = = − = 
    − −   

    ,
say for some m∈R , such that 0m ≥ .

By the ratio test ( ) 1nx ∈   if and only if m<1. That is, if and only if 
12 1 1

2
l

l
 − < 
   or 
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1 1
2 2

l − <
.

It is clear that 1l =  is an eigenvalue corresponding to the eigenvector ( )0 ,0,0,... tx

, where 0x  is a non-zero real or complex number. Hence the result. 

Theorem 2.3: The spectrum ( )Qs  of ( )0Q B c∈  is the set 

                                                     

1 1:
2 2

l l
 

∈ − ≤ 
 

�
.        

Proof: By virtue of theorem (2.2) and theorem (1.1), it is enough to show that 

( ) ( )1
0Q I B cl −− ∈  for all ∈⊄l , such that 

1 1 .
2 2

l − >
. 

To this end we solve the system ( )Q I x yl− =  for x in terms of y to obtain:         

         

0 1 1
1 1 1

1 1 1 ,0
1 1 1 12 1 1 2 1 2 1

2 2 2

n kn n n k
n n n n n k n k

x y y y k n
l l l

l l l l

− +
+ − − − +

= − − − ≤ ≤
       − − − −       
                                                                                                                                                        

   
                                                                                                                      (2.6).

System (2.6) yields the matrix of ( ) 1Q Il −−  which we denote by M. That is 

                                                                                                           
                                                                                                                  (2.7).
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   So that        

                                                                                 

                                                                                         (2.8).

Note that 

A simple calculation shows that 
                                                

1 1MM M M I− −= =

Which confirms that M is the inverse of matrix ( )Q Il− .

Columns of matrix M converge to zero if 

( )1
1, 0.

th

th

n term
k

n term
+

< ≥

For 0k ≥  , we have that 
lim 0nkn

m
→∞

=
, when 

1 1
2 2

l − >
. This deals with condition 

(i) of theorem (1.2).
Using theorem (1.2) on matrix M it is easy to see that,
   

                  0
supn nk

n
m

∞

=

< ∞∑
,  

provided ∈⊄l , is such that . So that  if 
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 is such that . All this implies that   

for all  , such that .    

  
Application
The results found in this paper may be used in solving systems of linear equations 
which arise during experiments in science and engineering.     

3.0	 CONCLUSION
In this paper we have determined the following results: 

(i)	 The set of eigenvalues for Q B(c ) is null.

(ii)	 The spectrum of Q B(c ) is the set 
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